Finding Shower Vertices using a CNN

Leigh Whitehead
ProtoDUNE Reconstruction Meeting
28/06/17

Introduction

- One of the trickier problems to solve in LAr-TPC reconstruction has been the accurate identification of shower vertices
 - This is vital for high-level tasks such as reconstructing pi-zeros and performing electron / gamma separation
- Seeing the success of the track / shower CNN, we have started to develop a CNN to search for shower vertices.
- Still quite early in the development, but I wanted to outline the ideas and very preliminary results

A question of training

- The first job is to define the signal that we need to train on
- I have produced a number of particle-gun pi-zero decays in the TPC
 - Energy of 1 GeV +/- 0.5 GeV
 - This is actually a bit high on average for the energies we can expect, but was just an initial choice
- Then use truth information to select out those spatial points where a gamma conversion occurred
 - Gamma required to have at least 40 MeV energy to be considered

• Look at the number of neighbouring hits to each gamma conversion in a 7x7 grid, and two populations appear:

Clear gamma conversions at the beginning of a shower

 We want to select this population of gamma conversions at the start of the showers

- Optimised cut selects those with between 5 and 14 neighbours.
 - Optimised using the two Gaussian functions and S/sqrt(S+B) F.O.M.

Example of selected gamma conversions:

Example of selected gamma conversions:

A question of training

- The CNN is trained using the definition of signal given by the number of neighbours
- Background patches for the training come from various parts of the images that are not defined as signal
- Second training was using 300,000 patches
- Network output from 0 to 1, with 1 most likely to be a gamma conversion

Example Output (1)

Example Output (1)

Example Output (2)

Example Output (2)

Example Output (3)

Example Output (3)

Summary

- Work has begun on training a CNN to identify shower vertices
 - Use the number of neighbours of photon conversions to define the signal
- Initial scans of event displays look promising
 - Some false positives at the end of electron tracks. Will try to include a sample of these labelled as background.
- Now need to work on performance metrics for quantitative measures of how well the network is performing
- Think how to integrate it with the track / shower CNN

Example from first training

 Bright spots in the bottom right identify regions considered likely to be gamma conversion points

Example from first training

 Bright spots in the bottom right identify regions considered likely to be gamma conversion points

